1 |
How many positive perfect squares less than are multiples of ? |
S |
2 |
A 100 foot long moving walkway moves at a constant rate of 6 feet per second. Al steps onto the start of the walkway and stands. Bob steps onto the start of the walkway two seconds later and strolls forward along the walkway at a constant rate of 4 feet per second. Two seconds after that, Cy reaches the start of the walkway and walks briskly forward beside the walkway at a constant rate of 8 feet per second. At a certain time, one of these three persons is exactly halfway between the other two. At that time, find the distance in feet between the start of the walkway and the middle person. |
S |
3 |
The complex number is equal to , where is a positive real number and . Given that the imaginary parts of and are equal, find . |
S |
4 |
Three planets revolve about a star in coplanar circular orbits with the star at the center. All planets revolve in the same direction, each at a constant speed, and the periods of their orbits are 60, 84, and 140 years. The positions of the star and all three planets are currently collinear. They will next be collinear after years. Find . |
S |
5 |
The formula for converting a Fahrenheit temperature to the corresponding Celsius temperature is . An integer Fahrenheit temperature is converted to Celsius and rounded to the nearest integer; the resulting integer Celsius temperature is converted back to Fahrenheit and rounded to the nearest integer. For how many integer Fahrenheit temperatures with does the original temperature equal the final temperature? |
S |
6 |
A frog is placed at the origin on a number line, and moves according to the following rule: in a given move, the frog advanced to either the closest integer point with a greater integer coordinate that is a multiple of 3, or to the closest integer point with a greater integer coordinate that is a multiple of 13. A move sequence is a sequence of coordinates which correspond to valid moves, beginning with 0, and ending with 39. For example, 0, 3, 6, 13, 15, 26, 39 is a move sequence. How many move sequences are possible for the frog? |
S |
7 |
Let
Find the remainder when N is divided by 1000. (Here denotes the greatest integer that is less than or equal to x, and denotes the least integer that is greater than or equal to x. |
S |
8 |
The polynomial is cubic. What is the largest value of for which the polynomials and are both factors of ? |
S |
9 |
In right triangle with right angle , and . Its legs and are extended beyond and . Points and lie in the exterior of the triangle and are the centers of two circles with equal radii. The circle with center is tangent to the hypotenuse and to the extension of leg CA, the circle with center is tangent to the hypotenuse and to the extension of leg CB, and the circles are externally tangent to each other. The length of the radius of either circle can be expressed as , where and are relatively prime positive integers. Find . |
S |
10 |
In the grid shown, of the squares are to be shaded so that there are two shaded squares in each row and three shaded squares in each column. Let be the number of shadings with this property. Find the remainder when is divided by . |
S |
11 |
For each positive integer , let denote the unique positive integer such that . For example, and . If , find the remainder when S is divided by 1000. |
S |
12 |
In isosceles triangle , is located at the origin and is located at . Point is in the first quadrant with and . If is rotated counterclockwise about point until the image of lies on the positive y-axis, the area of the region common to the original and the rotated triangle is in the form where , , , are integers. Find . |
S |
13 |
A square pyramid with base and vertex has eight edges of length 4. A plane passes through the midpoints of , , and . The plane's intersection with the pyramid has an area that can be expressed as . Find . |
S |
14 |
Let a sequence be defined as follows: , , and for , . Find the largest integer less than or equal to . |
S |
15 |
Let be an equilateral triangle, and let and be points on sides and , respectively, with and . Point lies on side such that . The area of triangle is . The two possible values of the length of side are , where and are rational, and is an integer not divisible by the square of a prime. Find . |